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INTROD UC TiON

Inflated vehicles of biconic shape have been proposed for use as

strategic ballistic weapons. The forecone and base disk would be relatively

rigid and separated by an axial compression column (Fig. 1). The aft frustum

would consist of fabric stretched between forecone and base and supported by

internal pre ssurization. A major concern is that rising external pressures

during reentry Will increasingly displace the cloth surface and alter the

aerodynamic characteristics of the ‘softened” vehicle until an altitude is

reached below which the mission is compromised. The present theory pre-

dicts static aerodynamic de rivatives for the perturbed (“banana”) biconic.

Inflatable structures have been studied for many years. Just since 1972 ,

article s have appeared on the shape of balloons, flexible deceleration devices,

air bags for ground effect vehicles, infl ated paragliders, inflated sails,

inflated marine cantilevers, air springs, lighter-than-air vehicles, inflated

pontoons, space in.flatables, inflatable rocket nozzle extensions, etc. Non e

of these is referenced he re , because none describe s an inflated yawed cone

(nor , in fact, any inflated yawed shape in hypersonic flow).

The displacements expected (Fig. I) depend gene rally on the imposed

axial tension, the amount of internal pressurization, the elasticity of the

frustum fabric, and the scale or size of surface deflection. The value of

the present analysis is that it explicitly retains and displays the effects of

two of these important features: the amount of axial tension and the amount

of internal pressurization. Othe r features are necessarily omitted; we assume

-5-
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that the cloth is inelastic (unless the level of pressurization is uniquely that

which makes the u.nyawed, symmetric shape conical) and that the fabric die-

- . placement is small enough for the present linearized description. Three

other assumptions are made that may be important in special applications:

that the external pressures are Newtonian, the vehicle is slender and non-

S porous, and the angle of attack is small compared with the cone half-angle.

I

*
-7-

~~~~~~~~~~~~~~~~~~~~~ ~~~:: _ _ _ _S - S-~~~ SS S



_ _ _  ~5 5 ~ -‘
I’

H!
ANALYSIS

An axisymmetric biconic , whose ri gid forecone has semiapex angle

e(e << 1) and length Tx 1/e (Fig. 2), and whose frustum has semiapex angle

r ( r  << 1) and theoretical length L, is placed in a hypersonic flow at small

yaw angle ~~~~~ << i) .  The bow shock wave is assumed to lie so close to the

body (M2 .r 2 >> I and ‘y - 1 << 1, whe re y is specific heat ratio) that exte rnal

pressures can be approximated by Newtonian values.

PRESSURES ON AFT FRUSTUM

Let r be the radiu s in any cross section and ~ the meridian angle

measured from the windwa rd ray, and let ~.i tan ’ (r~~/ r), where subscript ~

or x denote s differentiation of local radiu s r with respect to ~ or x, re spec-

tively. Variables ~ and ~i. are shown in Fig. 3a, which depicts what would be

seen by an observe r stationed at x 0 and looking aft. Figure 3a is a sphe rical

triangle whose legs are small angles. Because of the slender-body approxi-

mation, the laws of plane trigonometry apply in Fig. 3a. Without deformation,

r = T and F~ = 0. From the sine lawx

r sin 1./sin ~~<< 1;

C = r sin p/sin (~ 
-

The Newtonian pressure coefficient is 2 cos2ó , where 6 is the angle

between the downwind direction and the external surface normal. This nearly

right angle is shown as one side of the spherical triangle in Fig. 3b. The

angle q~ - p. is common to both Fig. 3a and Fig. 3b. From the cosine law for

-9-
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side s of a spherical triangle

cos ã = - y + ( ~~-~~ ) cos (~~- p . )

Combination of these relations leads to the external pressure coefficient

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ( I )

Let displacements r - rx of the fabric frustum be small: Ir - ix i  < < r~~.

Since displacements are expected to be continuous around the entire circuni-

ference, ~i is of order r - r, which is assumed small compared with ,. If

~ is also assumed small compared with r, the linearized pressure coefficient

on the frustum is simply

= 2 r 2 
+ 4.r(r - ~ + ~ cos ~

) (2)

which clearly could have been obtained without introduction of the small dis-

placement angle p.. On the rigid forecone , where the semiapex angle is 0

C~~= Z 0 2 + 40 or cos~~ (3)

The pressure p~ inside the frustum is assumed to be uniform and to be

given as the multiple P of the nominal external zero-lift pressure

2PZT

where q is dynamic pressure. The pressure difference p1 
- i~ 

(.Ap) across

the fabric is then

i~p/q=z .r
2(P_ i)_4i.(r~~

_ i . + or coa~~) (4)

I
-12-
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FORCE COMPONENT EQUATIONS

S Let the product of stress and skin thickness be denoted by T’~, T~ , and

T~~~. The first two are tensions per unit surface length in the axial and

S azimuthal directions, respectively. TXI
~ is the shear force per Length. In

S 

order for forces on a surface element of length dx and width rd~ to be in

equilibrium, each component of force must vanish. For a slender body

(r < < i )  and small surface displacement (r~ /r  << 1), the radial, axial, and

azimuthal components are related, re spectively, as

r~~p + (Txrrx)x + (T’
~

’r~ )~ + (T~ r~~/r )~ + (T”
~r~

)
~ 

- T~ = 0 (5)

rr + (rTx)x + T~~ = 0 (6)

-Ap r~ + T + (r ~~X~~) = 0 (7)

AXIAL TENSION

Our interest lie s in small displacements from a conical shape (r = ix),

such as the cone expected at zero angle of attack if the level of internal

pressurization is that for which the cloth was shaped. The zero-order

integrated fo rm of Eq. (6), the axial component balance, is then

TXT = C + ( i / 2 )A p ( i x ) 2 (8)

Physically, the constant C represents the compressive force (—Zi i ) in the

central column (Fig. 1) that stretches the fabric in the absence of aerodynamic

pressures. When the zero-orde r form of Ap, given by Eq. (4) is used in the

-13-
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second right-member term above (and it is naturally assumed that P is of

order unity and x is of orde r L), this last te rm of Eq. (8) is found to be of

order qi4L2. The present theory is intended to apply where the left member

of Eq. (8) is , instead, of the lower order qi-2L2. This intent is fulfilled when

the zero-order axial tension is normalized as

xTX 
= TZqrL 2 

, 
2 << T € 1(i) (9)

Change s in Ap affect TX only through the last te rm of Eq. (8), which is of

S order ,2 compared with the constant term and is neglected in Eq. (9). Changes
S in skin length, which might a.ffect TX through axial elasticity, vary as the

square of skin displacement and are similarly neglected. The normalized

axial tension parameter T is thus a known parameter in the present linear

treatment. S

SHEAR STRESS

The circumferential or “hoop” tension per station, T~ , is expected to

consist of both zero- and first-order contributions. A physical reason for

changes in T~ being of first orde r when those in TX are of second order is
S that the fabric skin is not fixed to a rigid frame on any meridian as it is at

fore and aft stations. The shear force per length, T~~ , on the other hand,

is of first order. There is no ze ro-order component of TX , because it is

assumed that erection of this inflated vehicle was achieved without any torsion

built in between the rigid forecone and base (Fig. I) .

Examination of the seve ral terms in the left member of Eq. (5) reveals

that the third and fifth te rms involve In the third te rm, both T~~ and

.1,

- 14-
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are of first order; this term is therefore of second orde r and is neglected.

The fifth term, (T’~~r~ )~ . contain s only one possibly first-orde r term, namely,

T 7T. We can express thi s term as a function of displacement immediately b y

multiplying Eq. (6) by T. However, these replacement terms for T~~ 1 are of

orde r Ap ri 2, which is small compared with rA p, the f i r s t term of Eq. (5) .
S 

As a result , both terms involving T’ cart be omitted from Eq. (5).

Examination of the three terms in the left member of Eq. (7) reveals

tha t the first term, -Ap r~ , must be considered as first order if rAp is called
S zero order. The third te rm, however , is of orde r ~~~~~~~~~ which is of orde r

a term that was found above to be of order rApr 2, 1. e., of second

order and negligible. On this basis, Eqs. (5) and (7) can and will be solved

for small displacements of the skin on a slende r cone without consideration S

of shear stress. Equation (5) with (9) then becomes S

S 2r ~~{r ~~~ + TL2(_.~2E) ] + T~ (-~~~ - 1) = 0 (10)

Equation (7) with (4) can be integrated to the form

T~ = T~ (0 , x) + 2.r 2q(P- 1)[r — r(0 , x)] (11)

HOOP STRESS

The windward circumferential tension per station, T (o , x), consi sts of

both zero- and first-order contributions when P >  1. The zero-orde r part ,

from Eq. (5), is the zero-order value of rA p, namely 2~~ (P - 1)qx. The

/
S first- order part will be called ~ T~(Ø, x). Elimination of ~~~~~ x) between

-15-
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5 1

Eqs. (10) and (11) and elimination of Ap by use of Eq. (4) lead to an equation

S for displacement r . When zero-order terms are removed, one is left with

— 1)[r(O, x) - ix + r~~] - Zr x(r ~ 
- i + ~ cos ~

) + TL2 (rr~ /x)~

- AT~’(0, x)/Ziq 0, P>  1 (12)

Because Eq. (12) describes the displacement on any meridian ~ , the unknown

function A T~(o, x) can be replaced by the value on the windward meridian of

all the other left-member te rms in Eq. (12).

- i)r~~ - 2.rx(r - i + ~ cos ~
) + TL2 (rr /x)

= 1(P - 1)r ~~ (O~ x) - 2rx[r~ (O, x) - i. + a ]  (13)

+ TL2[r(0, x)r (O, x)/x]~
, P >  I

Care must be taken, however, to ensure that the hoop stress is non-

negative, because compressive stresses cause membrane buckling immediately.

T~ is expected to vanish on all meridians when the vehicle is underpreseurized
S ( (P < 1). In this situation, the circumference is expected to be reduced, with

the surplus fabric being taken up in folds. These can be interior or exterior

folds; the present analysis doe s not describe the folds. In this linear analysis,

such reduction in circumference must be small and is treated as a first-orde r S

perturbation from the conical shape associated with P 1, even at zero angle

of attack. Specifically, when 0 < I - P << 1, Eq. ( 12) become s

r 2x(P - 1) - Z.r x(r - 1 +~~~~ cos ~
) + TL2 (rr~ /x)~ 

= 0 (13)

~16-
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S There is a very narrow zone of internal pressures, intermediate

between the external windward pressure and the slightly lower external

leeward pre ssure , fo r which a positive hoop stress may occur over a limited

range of (leeward) meridians. This transition range where P ~ I is not

S considered in detail, inasmuch as terms that were otherwise of first orde r

are there no longer large compared with neglected second-orde r terms , su h

as those involving shear.

DISPLACEMEN T WHEN P> I

It is convenient to introduce dimensionless variables R and y for dis-

placement and station as follows:

. 

r - ix = R(~ , y )r T 1”2 L ; x = yT 1’12L (14)

S 

With this choice, T disappears from the differential equation:

(P- i)R~~~- 2y(R~~÷~~ cos ~)+(~~+ R
y)y

= (P - 1)R~~(0,y) - 2Y[Ry(Oi Y) +~ .]+[~~?;~~ + Ry (O~ Y)]y (15)

For boundary conditions, it is required that the displacement R vanish at the

S biconic shoulder (the forward end of the membrane ) and at the base, where,

respectively

y 1 = T~~~’2x1 /L ; y2 = T 112 (16)

S 
For convenience, the length ratio ~ is introduced, where

S - 

= x1 /L = y1 1y2 (17)

-17-
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The de rivative R~ should also vanish on windward and leeward meridians

for lateral symmetry.
S 

The appearance of cos in the only forcing function in Eq. (15), and

the homogeneous boundary conditions along windward and leeward me ridians,

indicate that the solution has a similar variation with ~~. Let

R(~ , y) = R0 (y) + R 1(y) cos (18)

Then , equating coefficients of cos ~ and (cos ~)0, one has an ordinary

differential equation for R 1 (y)

- 

R ’ — 2yR + (R 1/y) ’ — (P — I)R 1 = 2yc~/.r (19)

whe re pr ime s indicate diffe rentiation with respect to y; however, one has no

information with regard to axisyrnmetric displacements R0, such as might

be caused by levels of inte rnal pressure s other than that for which the conic

skirt was shaped.

An expression for the axisymmetric displacement R0 can be developed

by introducing a stress-strain relationship such as

(r - ix) 5~~~ /ix = (T~ ym - T~ ef)/hE = 2r 3(P - P~~j )qx/hE

S where hE is thickness time s the elastic modulus in hoop tension. In

normalized var iables

C~~y2 
, CR = ,2 (P - P~~f )(hE) 1(ZqixTX) 1t2

_ 18-



Because R 0 he re doe s not vanish at y1 and y2 as required in the present

analysis, it appears that the orde ring of magnitudes for the various terms in

the differential equations (5) through (7) probably falls in a small neighborhood

of the end constraint points. For example , the shear stress is expected to

peak at the end point s, and perhaps one of the shear te rms is not negligible

there when R 0 doe s not vanish identically.

We avoid this complication in the present analysis by limiting it to

cases where R0 is zero everywhere . As a result, the present analysis for

F >  I is apparently limited in validity to two cases: ( 1) the case in which the

internal p re ssure is precisely that which produces a conic shape in elastic

cloth at zero angle of attack (P = 
~ ref 1 and (2) the case in which the cloth is

inelastic (hE -. 03) so that the shape at zero angle of attack is conical for any

S level of pressurization provided P >  1.

Equation (19) does not seem to describe any of the common, tabulated

S mathematical functions. It can, of course , be integrated numerically to
S provide an R 1/ce profile for particular choice s for P - 1, T, and ~~. Presented

here are profiles for large and small values of the tension parameter T. Also

presented, because of its critical importance in an application, is the variation

of displacement slope at x = L with T.

T > > i

Zn this high-altitude case, y < <  1. We reduce Eq. (19) by neglecting the

second and fourth left-member terms. The immediate solution is

R 1(y) = - (cr/ i)(4y) 1(y 2 
- y~)(y~ - y2) (20)

- 19-
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which is independent of pressurization level, P >  I. The maximum value
S 

of absolute displacement is given by

(r - Tx)maxT/(~
L) = 6_ 3/2 [I + + (1 + j 4~~2 

+ ~
4) I / 2 1I /2

(2 1)

x [-2(1 + ~2 ) + (1 + j 4~~2 
+ ~4) I / Z ]

which is plotted in the dashed line in Fig. 4. The maximum occurs at a value

of (y/y 2 )2 that approache s 1/3 as ~ - 0 (vanishing forecone ) and that approache s

(I + ~
2 )/ Z as ~ -~ 1 (vanishing aftercone skirt).

S T < < 1

We reduce Eq. (19) by neglecting the third left-member term eve ry-

whe re. The first left-member te rm contains the highest orde r derivative,

R 1,  and is retained so that the reduced version of Eq. (19) has a solution

that is uniformly valid in (y 1, y2 ); i. e., it vanishes as required at both ends.

Because y >> 1, the solution can be furthe r reduced to

= -Z(c~/ r)(P + I )
_ 1

y [i — (~~~/~ )( i+P )/Z (I - ~(1÷P) IZ )
(22)

~~(y/ y2 ) (P _ S) /Z exp
(~

2 
- y~ )], y>>  i

In this low-axial-tension limit (low altitudes), the solution retains a

dependence on pressurization level P. The solution in this limit has an

S inte resting character . The displacement of the windward and leeward surfaces 
5

(~ R1) inc reases in magnitude linearly with distance from the forward attach-

S 
ment point until I - x/L is only (T/2) log (l IT) .  The displacement then

vanishes abruptly as x — L. The maximum value of the absolute displacement

is approximately

-20-
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(r - 1x)max / (~
L) = Z(P + I)~~~(1 - ~(l+ P)/Z ) (23)

This rela tion is plotted as the solid curve s in Fig. 4 for four values of

pre ssurization.

Slope at x = L

External pre ssure s in the Newtonian approximation depend on the sur-

face slope rather than on the displacement per se. The maximum slope

occurs at the af t attachment, x = L (on the windward side). There , from

Eqs. (20) and (22)

(1 — ~2)/2 T > >  1; 5

(r - ~ a T5 x m x  (24)
4(P +  j )

_ 1
(j — ~(l+P)/2 ) ,

In addition, Eq. (19) has been integrated numerically to provide the maximum

slope for the general case whe re T is of order one. This variation is plotted

in Figs. Sa and 5b, which also show the asymptotic values from Eq. (24) as 
S

dotted lines. Values in the lower half of these plots are compatible with the

assumption of linearity . Values in the upper half are shown for their

qualitative features.

DISPLACEMENT WHEN P < I

in terms of normalized variables R and y, Eq. (13) becomes

- 2YR~ + R~ /y - R/y 2 
= y fi  - P + 2(~ / ,) cos t] (25)

~
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Fig. 5b. Surface Deflected Slope at x L, P = 4
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Again , a cosine variation of the form given in Eq. (18) is indicated. In the

- - present instance, R 1 (y) is the same as for P>  I , and the symmetric part

R (y) is proportional
0

5

5 R0(y) : (1 — F) ~ R 1 (y) : 2a/T (26)

Thu s

R’ ) - I - P + 2~~I T) C08 

~ R ( ) (27
S 

- 
Z( ci IT) cos ~ ~ y

t This eliminate s the need for separate solutions for this case; the solution

L 
without fold s in the skin (P> 1) is extended into the domain 0 < I - P << I ,

where the skin develops longitudinal folds (also called creases , f ins, or

~ strakes) but where the fractional reduction in circumference remains small.

FRUSTUM SEC TION FORCES

For any level of internal pr essure or displacement shape, the total
5 

5 axial and normal forces may be obtained by integrating exte rnal pre ssures.

The external pressure coefficient can be expressed as S

= I + Z[R~ + (a/ i )  cos (28 )

The axial force per station X ’, to first orde r in the small displacement scale ,

is

X ”/ q = 4ir r 4x(l + 3R~ + R0/y) (29 )

-25-



5 

1

I

arid the normal force per station N’ is

S 

N ’/q = 41TT 3x(R~ + c Y / T )  (30)

Equation (29 ) assures us that the re is no change in axial force for P>  1, for

then the symmetric displacement R0 vanishes in this essentially inelastic

analysis. When 0 < I - P << I , this relation can be written

X ’/ q = 4 n . r 4
x[l + /~ ) (3R ; + R j /y)], P < I  (31)

BIC ONIC FORCE AND MOMENT COEFFICIENTS

The axial force coefficient C , based on base area in the present

slende r-body, Newtonian-pressure approximation is unchanged for P>  I;

for 0< 1 - P < <  1, however, C can be written as

= ze 2
~~

2
÷ fr~ 2L2 )

_ I~~~~~(X S /q) dx (32)

which can be written, after an integration by part s, as

- 2T 2 
— 

P) 2 
¶ 2 )~ 2 

= - (aI~) f  R 1 dy, P < 1 (33)

The normal force coefficient slope, based on base area, can be expressed, by

use of Eq. (30) and a similar integration by parts, as

CN - 2 - ( / )f
R
l

dY~ P~~ I (34)

Y j 
(

5~

S 
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Both Eqs . (33) and (34) have the same right member, and this is plotted

in Figs. 6a and 6b for ~ = 0. 5 and P 4, re spectively. Limiting values are

S 

(4T) 1(i + 4~
2ln~~- ~4), T > >I ;

- CN - 2 -  (35)

I 
4(P + Ii~~(3 - P )

1[3 - P + (1 + P)~~ - 4~
( i+P)/2] T << I

S 

which are the dashed lines of Fig. 6.

The pitching moment coeff icient slope, taken about the point x = 0

(theoretical nose) and based on base area and base diameter , is given by

4 TC
M + 3~~ [2 + ~3(j  - T/ 8)J  = 4T 3/2 (~ /T)

_
~~~ yR 1dy (36)

This static stability derivative is plotted in Figs. 7a and lb for ~ = 0. 5 and

P = 4, respectively. Limiting value s are

—2(I5T) 1(l — 
~~)

3
(j  + 3~~+ ~2 ), T> >  I;

S 

TC M + 3
_ l

iz + — T / 9 ) ]  — (8/3)(P + I)~~~(5 — P)~~’

- x[5 - P + (P + j )~ 3 
- 6~~(i+P) /2], T << I

(37)

and these appear as dashed lines in Fig. 7.

- 
5

;

.

V

1 -
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Fig . 6a. Axial and Normal Force Coefficient, ~ = 0.5
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Fig. 6b. Axial and Normal Force Coefficient , P = 4
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The center-of-pressure location, expressed as a fraction of the

theoretical Length L, is given by

S 

X~~p 2 j~ (I - = 

~~ 
(
~ 

- 2  i—) R~ dy (38)

This relationship, plotted in Figs. 8a and 8b for ~ 0. 5 and P = 4,

respectively, is simply minus the right member of Eq. (36) minu s half of

that of Eq. (34). Limiting value s are obta ined accordingly from Eqs. (37)

and (35).

So

I
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DISCUSSION

The pre8ent linearized theory has shown how “softening” the vehicle

(inc reasing the dynamic pressure for given fabric tension) increases both

S static stability and static margin (Figs . 7 and 8). Also shown (Fig. 5) is

how the slope of the fabric at the tail on the windward side increases

I dramatically as the tension parameter decreases. As this slope increases,

so doe s local heating rate. Vehicle designs can be conceived whe re this

effect is more critical than changes in the aerodynamic coefficients. Further ,

as the aft fabric slope increases, local external pressure may climb above

- the given internal pressure level. Such pressures would surely create folds

(strakes) in the fab ric , with radical aerodynamic and dynamic consequences.

S 
) From the se considerations, it is concluded that inflated membrane S

biconics are useful only in environments where the tension parameter T,

defined in Eq. (9), is at least of order one. Further, it appears that this

useful range of T cannot be appreciably extended by increasing the pres-

surization Level P, where P is p.12 r 2q), unless P is at least an order of

magnitude greate r than one. 
S
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THE IVAN A. GETTING LABORATORIES

The Laboratory Operations of Tb. Aero .pace Corpor at ion is conducting
experimental and theoret ical investigations necessary for the evaluation and S

app lication of scientific advanc es to new military concepts and systems. Ver-
satil ity and flexibility have been developed to a high degree by the laboratory 4

’
personnel in dealing with the many problems encountered in the nati on’, rapidl y
developing space and missi le systems. Expertise in the latest scientific devel-
opment s is v ita l to the accomplis hment of tasks related to these problem .. The
laboratories t hat contribute to this research are: S

Aero phys ic. Laboratory: Launch and reentry aerodynamic., heat tran s - S

fer , reentry ph ysics , chemical kinetic. , structura l mechanics , flight dynamics,
atmosp heric pollution , and hi gh-power gas lasers.

Chemistry and Phys ics Laboratory: Atmospheric reactions and atmos-
pheric optics , chemical reaction , in pol luted atmosp heres , chemical reactions
of excited ,.pecies in rocket plumes , chemical thermod ynamic. , plasma and

- laser-induced reactions , laser chemistry, propulsion chemistry, space vacuum
and radiation effects on mater ials , lubrication and surface phenomena , photo-
sensit iv r material , and sensor s , high precision laser ranging, and the app li-
cation of physics and chemistry to problems of law enforcement and biomedicine.

• Electronics Research Laboratory: Electroma gnetic theory, devices , and
S propagation phenomena , including plasma electromagnetic s; quantum electronics,

S laser., and electro -optic s; communication sciences , applied electronics , semi -
conducting, superconducting, and crystal device physics, optica l and acoustical
imaging; atmospheric pollution; millimeter wave and far -infrar ed technology.

Materials Sciences Laboratory : Development of new mat erials; metal
S matrix composites and new forms of carbon; test and evaluation of grap hite

and ceramics in reentry; spacecraft materials and electroni c components in
nuclear weapons environment; application of fracture mechanics to stress cor-
rosion and fatigue-induced fractures in structural metals.

Space Sciences Laboratory Atmospheric and Ionospheric physics , rad ia-
tion from the atmosphere, density and composit ion of the atmosphere , aurorae
and airg low : magnetosphe r ic physics , cosmic rays , generation and propagation
of plasma waves in the magnetosp here; solar ph ysics, studies of solar magnetic

S fields; space astronomy, x-ray astronomy; the effects of nuclear explosions ,
magnetic storms , and solar activity on the earth’ s atmosphere . lonospher . and

S magnetosphere; the effects of optical , electromagnet I c , and part iculate rad la-
t ions in space on space systems.

THE AEROSPACE CORPORATION
El Segundo , California
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